Abstract

[1] Cloud feedback represents the source of largest diversity in projections of future warming. Observational constraints on both the sign and magnitude of the feedback are limited, since it is unclear how the natural variability that can be observed is related to secular climate change, and analyses have rarely been focused on testable physical theories for how clouds should respond to climate change. In this study we use observations from a suite of satellite instruments to assess the sensitivity of tropical high clouds to interannual tropical mean surface temperature anomalies. We relate cloud changes to a physical governing mechanism that is sensitive to the vertical structure of warming. Specifically, we demonstrate that the mean and interannual variability in both the altitude and fractional coverage of tropical high clouds as measured by CloudSat, the Moderate Resolution Imaging Spectroradiometer, the Atmospheric Infrared Sounder, and the International Satellite Cloud Climatology Project are well diagnosed by upper tropospheric convergence computed from the mass and energy budget of the clear-sky atmosphere. Observed high clouds rise approximately isothermally in accordance with theory and exhibit an overall reduction in coverage when the tropics warms, similar to their behavior in global warming simulations. Such cloud changes cause absorbed solar radiation to increase more than does outgoing longwave radiation, resulting in a positive but statistically insignificant net high cloud feedback in response to El Nino–Southern Oscillation. The results suggest that the convergence metric based on simple mass and energy budget constraints may be a powerful tool for understanding observed and modeled high cloud behavior and for evaluating the realism of modeled high cloud changes in response to a variety of forcings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call