Abstract

The object detection based on deep learning is an important application in deep learning technology, which is characterized by its strong capability of feature learning and feature representation compared with the traditional object detection methods. The paper first makes an introduction of the classical methods in object detection, and expounds the relation and difference between the classical methods and the deep learning methods in object detection. Then it introduces the emergence of the object detection methods based on deep learning and elaborates the most typical methods nowadays in the object detection via deep learning. In the statement of the methods, the paper focuses on the framework design and the working principle of the models and analyzes the model performance in the real-time and the accuracy of detection. Eventually, it discusses the challenges in the object detection based on deep learning and offers some solutions for reference.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.