Abstract

The predicting methodology the state of the object based on diagnostic data is considered. With the selected parameter that determines the state of the object, it is measured in real time at a fixed sampling step. According to the measurement data, the value of this parameter is predicted in the future. This operation is implemented by an extrapolator of the l order - a l degree polynomial, built using the least squares method based on the previous measurements results. The changing process model of the diagnosed parameter is a random time function described by the stationary centered random component sum and a mathematical expectation deterministic change. The estimating prediction error method and the extrapolator parameters influence on its value are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.