Abstract

Group IV polysaccharide capsules are common in enteric bacteria and have more recently been described in nontyphoidal Salmonella species. Such capsules are known as O-antigen (O-Ag) capsules, due to their high degree of similarity to the O-Ag of the lipopolysaccharide (LPSO-Ag). Capsular polysaccharides are known virulence factors of many bacterial pathogens, facilitating evasion of immune recognition and systemic dissemination within the host. Previous studies on the O-Ag capsule of salmonellae have focused primarily on its role in bacterial surface attachment and chronic infection; however, the potential effects of the O-Ag capsule on acute pathogenesis have yet to be investigated. While much of the in vivo innate immune resistance of Salmonella enterica serovar Typhimurium is attributed to the high-molecular-weight LPS, we hypothesized that the O-Ag capsule may enhance this resistance by diminishing surface expression of pathogen-associated molecular patterns, such as flagella, and increasing resistance to host immune molecules. To test this hypothesis, O-Ag capsule-deficient mutants were constructed, and the loss of O-Ag capsular surface expression was confirmed through microscopy and immunoblotting. Loss of O-Ag capsule production did not alter bacterial growth or production of LPS. Western blot analysis and confocal microscopy revealed that O-Ag capsule-deficient mutants demonstrate reduced resistance to killing by human serum. Furthermore, O-Ag capsule-deficient mutants produced exclusively phase I flagellin (FliC). Although O-Ag capsule-deficient mutants did not exhibit reduced virulence in a murine model of acute infection, in vitro results indicate that the O-Ag capsule may function to modify the antigenic nature of the bacterial surface, warranting additional investigation of a potential role of the structure in pathogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.