Abstract

Abstract. Volume emission rate profiles of the O(1D-1S) 5577 Å dayglow measured by the WIND imaging interferometer on the Upper Atmosphere Research Satellite are analyzed to examine the O(1S) excitation mechanisms in the sunlit lower thermosphere and upper mesosphere. The observed emission profiles are compared with theoretical profiles calculated using a model which takes into account all of the known daytime sources of O(1S). These include photoelectron impact on atomic oxygen, dissociative recombination of O+2, photodissociation of molecular oxygen, energy transfer from metastable N2(A3Σ+u) and three body recombination of atomic oxygen. Throughout most of the thermosphere the measured and modelled emission rates are in reasonably good agreement, given the limitations of the model, but in the region below 100 km, where the oxygen atom recombination source is likely to dominate, the measured emission rates are considerably larger than those modelled using the MSIS-90 oxygen atom densities. This discrepancy is discussed in terms of possible inadequacies in the MSIS-90 model atmosphere and/or additional sources of O(1S) at low altitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.