Abstract

Sjögren's syndrome (SS) is a chronic rheumatic autoimmune disorder affecting multiple organ systems. The clinical findings in SS patients show considerable heterogeneity and overlap with other autoimmune diseases. In addition, the autoimmune response in SS initiates several years before the appearance of clinical symptoms. Thus, understanding the pathogenic mechanisms involved in the disease process have been a challenge. Several animal model systems of SS-like disease have been developed to overcome these issues. The New Zealand Black (NZB) x New Zealand White (NZW) F1 (NZB/WF1) mouse represents the first spontaneous mouse model of SS. In this review, we provide a historical perspective and detailed description of this mouse model focusing on exocrine gland histopathology, autoantibody populations, and glandular dysfunction. Considering that NZB/WF1 mice also develop a systemic lupus erythematosus (SLE)-like disease, this mouse model mimics the clinical presentation of polyautoimmunity seen in a sizable subset of SS patients. It is plausible that such patients will require distinct therapeutic interventions necessary to treat both SLE and SS. Therefore, the NZB/WF1 mouse is a powerful tool to decipher pathogenic mechanisms involved in SS related polyautoimmunity and develop appropriate therapeutic strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call