Abstract

In Africa, livestock production currently accounts for about 30% of the gross value of agricultural production. However, production is struggling to keep up with the demands of expanding human populations, the rise in urbanization and the associated shifts in diet habits. High costs of feed prevent the livestock sector from thriving and to meet the rising demand. Insects have been identified as potential alternatives to the conventionally used protein sources in livestock feed due to their rich nutrients content and the fact that they can be reared on organic side streams. Substrates derived from organic by-products are suitable for industrial large-scale production of insect meal. Thus, a holistic comparison of the nutritive value of Black Soldier Fly larvae (BSFL) reared on three different organic substrates, i.e. chicken manure (CM), brewers’ spent grain (SG) and kitchen waste (KW), was conducted. BSFL samples reared on every substrate were collected for chemical analysis after the feeding process. Five-hundred (500) neonatal BSFL were placed in 23 × 15 cm metallic trays on the respective substrates for a period of 3–4 weeks at 28 ± 2 °C and 65 ± 5% relative humidity. The larvae were harvested when the prepupal stage was reached using a 5 mm mesh size sieve. A sample of 200 grams prepupae was taken from each replicate and pooled for every substrate and then frozen at −20 °C for chemical analysis. Samples of BSFL and substrates were analyzed for dry matter (DM), crude protein (CP), ether extracts (EE), ash, acid detergent fibre (ADF), neutral detergent fibre (NDF), amino acids (AA), fatty acids (FA), vitamins, flavonoids, minerals and aflatoxins. The data were then subjected to analysis of variance (ANOVA) using general linear model procedure. BSFL differed in terms of nutrient composition depending on the organic substrates they were reared on. CP, EE, minerals, amino acids, ADF and NDF but not vitamins were affected by the different rearing substrates. BSFL fed on different substrates exhibited different accumulation patterns of minerals, with CM resulting in the largest turnover of minerals. Low concentrations of heavy metals (cadmium and lead) were detected in the BSFL, but no traces of aflatoxins were found. In conclusion, it is possible to take advantage of the readily available organic waste streams in Kenya to produce nutrient-rich BSFL-derived feed.

Highlights

  • IntroductionThe livestock sector can act as a gateway towards alleviating poverty and enhancing food security[4,5]

  • In the developing world, the livestock sector can act as a gateway towards alleviating poverty and enhancing food security[4,5]

  • LC-Qtof-MS analysis for mycotoxins did not identify any traces of aflatoxin in the Black Soldier Fly larvae (BSFL)

Read more

Summary

Introduction

The livestock sector can act as a gateway towards alleviating poverty and enhancing food security[4,5]. The dry weight of Black Soldier Fly larvae (BSFL) contain up to 50% crude protein(CP), up to 35% lipids and have an amino acid profile that is similar to that of fishmeal[26] They are recognized and utilized as alternative sources of protein for feed of poultry, pigs, and several species of fish and shrimp[27]. The current study sought to perform a comparative holistic analysis of the quality of the nutritional composition of BSFL reared on organic waste streams that are largely and readily available in urban areas of Kenya and the developing world in general. A comparative study that is essential when deciding which organic waste streams are potentially suitable for industrial large-scale BSFL production in Kenya

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call