Abstract
In this paper, two novel types of semi-slow light photonic crystal waveguide with large transmission bandwidth obtained by shifting the boundaries of a W1 waveguide in the direction of light propagation are presented. One includes air rings localized at only one side of the line defect and the other replaces the holes at each side of the waveguide by the uniform air rings which are constructed by the homocentric square dielectric rod inserted into the air holes. The structure produces unusual “n-type” transmission spectrum depending on the different parameters such as inner radius of air ring, dielectric constant of square dielectric rod, etc. It is shown that the transmission spectra of the two structures are completely different from each other. A versatile control of light propagation with large normalized bandwidth and slow light phenomena can be obtained using a unique geometrical parameter. Numerical simulation by the finite-difference time-domain (FDTD) method demonstrates the propagation of the broadband pulse.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.