Abstract

The displacement pattern of wall footing rotation occurs for the backfill wall constrained at the bottom. The non-limit states of the soil layers at different depths are different in this pattern, and present difficulties for soil stress calculation. Based on the existing research, the functional relationship between soil strength parameters of the wall footing rotation pattern and wall displacements were detruded. Under the assumption that the backfill forms a circular arch and the slip surface is uncertain, the backfill was divided into long horizontal slices, the numerical iteration scheme for the nonlimit-state active earth pressure in the wall footing rotation pattern was constructed, and the numerical calculation method for the active earth pressure was given. The numerical method not only determines the slip surface shape, but calculates the intensity, the resultant force and the action point of the nonlimit-state active earth pressure. The backfill slip surface is a curved one and the new numerical solution is more consistent with the existing full-scale test results than the existing analytical results. This work provides more accurate numerical solutions of the nonlimit-state active earth pressure on the rigid retaining wall in the footing rotation pattern, and makes a practical guide to design of such retaining walls.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.