Abstract
In this paper, the distribution of surface wind pressure and wind speed of Hangzhou bay bridge, offshore platform and sightseeing tower is numerically simulated based on Fluent. Two turbulence models, standard k ε model and Realizable k ε model, are used. The influence of the wind pressure distribution of the offshore platform and sightseeing tower by Hangzhou bay bridge is also analyzed. And the detailed comparison between numerical simulation and wind tunnel test is given. Results show that the impact of Hangzhou bay bridge on platform and sightseeing tower occurs mainly with the angle of the wind less than 450. When the angle of the wind is more than 450, the impact is little. The upper of the sightseeing tower does not almost suffer the effect of other buildings. The surface pressure of the platform changes from 5% to 15% between under bridge and under non-bridge condition. The surface pressure of sightseeing tower changes from 0.05% to 3%. The influence on the platform by the bridge is significant but not significant on the sightseeing tower. The simulation results of the tower and mast structure given by both standard k ε model and Realizable k ε model find that the windward side is ideal; the crosswind side is the best; the leeward side is less than ideal. By contrast, the Realizable k ε model is a closer correlation with wind tunnel test than standard k ε model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.