Abstract

In this review we present and analyze the performance of a Go-dunov type method applied to relativistic fluid flow. Our model equations are the corresponding Euler equations for special relativistic hydrodynamics. By choosing an appropriate vector of unknowns, the equations of special relativistic fluid dynamics (RFD) can be written as a hyperbolic system of conservation laws. We give a complete description of the spectral decomposition of the Jacobian matrices associated to the fluxes in each spatial direction, (see (Donat et al., 1998), for details), which is the essential ingredient of the Godunov-type numerical method we propose in this paper. We also review a numerical flux formula that avoids/reduces numerical difficulties appearing in the ultrarelativistic regime, (i.e., high Lorentz factors). Using the spectral decompositions in a fundamental way, we construct high order versions of the basic first order scheme described by Donat and Marquina in ((Donat, Marquina, 1996)). We study, as a sample, a paricular shock tube test where special difficulties arise. We show two dimensional simulations where strong shocks are present, including a supersonic jet stream in a strongly ultra-relativistic scenario.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.