Abstract

In this research, the compression deformation were investigated under different elevated temperatures and strain rates, in order to obtain the creep constitutive equation. The effects of aperture load and pore shape on the compression properties of porous Cu alloys were studied by simulating the creep compression deformation at elevated temperature in ANSYS software. Pore size, pore shape and load are the main factors on the high temperature compression creep properties in porous Cu alloys. Samples with larger pore size, higher load and temperature showed inferior compression creep resistance such as bigger creep deformation, faster creep rates, and more unstable creep deformation. Stress concentrations generating around the edge in the wall of the pore were observed. Otherwise, the shape of pore has a severe influence on the structure properties of the material, i.e. every increase of pore edge corresponds to a decrease of stability in structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.