Abstract
To investigate complex fracturing and the influencing factors of simultaneous fracture propagation in horizontal wells, a three-cluster fracture propagation model that is controlled by fracture surface displacement parameters is established. When performing multistage fracturing on reservoirs with a relatively high development degree of natural fractures, staged multicluster fracturing in horizontal wells is one of the commonly used technical methods for volume fracturing. Two frequently encountered problems are multifracture extension and interfracture stress interference between fractures. The characteristics of the coal mechanics parameters of coalbed methane (CBM) blocks in northwestern China are analyzed by probability statistics to obtain the elastic modulus and Poisson’s ratio. With the interactive development environment of the MATLAB-PYTHON-FEM platform, a numerical model of fracture network expansion under the staged fracturing of horizontal wells is constructed. The stress interference level between fractures and the fractal expansion mechanism of fracture networks are analyzed under different influencing factors, including the fractal dimensions of natural joints, fracturing fluid pumping rate, and inhomogeneity coefficient of the in situ stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.