Abstract

AbstractConventional modelling of transport problems for porous media usually assumes that the Darcy flow velocities are steady. In certain practical situations, the flow velocity can exhibit time‐dependency, either due to the transient character of the flow process or time dependency in the boundary conditions associated with potential flow. In this paper, we consider certain one‐ and three‐dimensional problems of the advective transport of a chemical species in a fluid‐saturated porous region. In particular, the advective flow velocity is governed by the piezo‐conduction equation that takes into account the compressibilities of the pore fluid and the porous skeleton. Time‐ and/or mesh‐refining adaptive schemes used in the computational modelling are developed on the basis of a Fourier analysis, which can lead to accurate and optimal solutions for the advective transport problem with time‐ and space‐dependent advective flow velocity distributions. Copyright © 2006 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call