Abstract
This paper presents a review on the numerical manifold method (NMM), which covers the basic theories of the NMM, such as NMM components, NMM displacement approximation, formulations of the discrete system of equations, integration scheme, imposition of the boundary conditions, treatment of contact problems involved in the NMM, and also the recent developments and applications of the NMM. Modeling the strong discontinuities within the framework of the NMM is specially emphasized. Several examples demonstrating the capability of the NMM in modeling discrete block system, strong discontinuities, as well as weak discontinuities are given. The similarities and distinctions of the NMM with various other numerical methods such as the finite element method (FEM), the extended finite element method (XFEM), the generalized finite element method (GFEM), the discontinuous deformation analysis (DDA), and the distinct element method (DEM) are investigated. Further developments on the NMM are suggested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.