Abstract

In order to realize the time-domain analysis based on hysteretic damping model, the frequency-independent time-domain damping model of single degree of freedom (SDOF) system is constructed. Based on the assumed relationship of vibration responses, the equivalent frequency-independent time-domain damping model in complex domain and real domain are proposed. The characteristic that the dissipated energy in each cycle is not related to the vibration frequency of external excitation is retained for the two equivalent damping models. Combined with Newmark- β method, the corresponding numerical methods are obtained. The numerical examples show that the free vibration responses are stably convergent based on equivalent damping models. The numerical results of vibration responses of SDOF system due to earthquake wave have high calculation accuracy. Compared with equivalent frequency-independent time-domain damping model in real domain, the computational accuracy of equivalent frequency-independent time-domain damping model in complex domain is higher, and the computational efficiency is lower.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.