Abstract
The hydrothermal performance and entropy generation rate in a pin–fin heatsink were numerically investigated under different vibration transducer power distribution scenarios between 11 transducers located at 3 walls of the heatsink. Two cases were investigated; Case#A and Case#B which are different in 3 transducer locations on one wall of the heatsink. The highest convection coefficient (h) in Case#A was obtained for a variable power scenario, which escalated pressure drop (ΔP) by 91.94%. However, the highest h in Case#B was obtained for the constant power scenario. In addition, h, average temperature of CPU, and thermal resistance factor in Case#A are 5.84% higher than, 0.41% lower than, and 5.34% lower than those in Case#B. The PEC factor for Case#A is higher than unity (1.31) only under the constant power scenario, while the PEC of Case#B is higher than unity under different studied scenarios. Frictional irreversibility (Ṡfr) for Case#A was obtained as 1.45–74.56% higher than that for Case#B due to the swirl flow generated by the high-power transducers and creating the huge velocity gradients in Case#A. Nevertheless, the high flow mixing in Case#A leads to reducing the temperature gradients against Case#B, thereby thermal irreversibility (Ṡth) in Case#A is almost 7.05–19.69% lower than that of Case#B.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.