Abstract

BackgroundTumor metastases are the major cause of cancer morbidity and mortality. A subpopulation of tumor cells with stem-like properties is assumed to be responsible for tumor invasion, metastasis, heterogeneity and therapeutic resistance. This population is termed cancer stem cells (CSCs). We have developed a simple method for identification and characterization of circulating cancer stem cells among circulating epithelial tumor cells (CETCs).MethodsCETCs were cultured under conditions favoring growth of tumorspheres from 72 patients with breast cancer, including a subpopulation of 23 patients with metastatic disease. CETCs were determined using the maintrac® method. Gene expression profiles of single CETCs and tumorspheres of the same patients were analyzed using qRT-PCR.ResultsSphere formation was observed in 79 % of patients. We found that the number of tumorspheres depended on stage of disease. Furthermore, the most important factor for growing of tumorspheres is obtaining chemotherapy. Patients with chemotherapy treatment had lower numbers of tumorspheres compared to patients without chemotherapy. Patients with HER2 positive primary tumor had higher number of tumorspheres. Analysis of surface marker expression profile of tumorspheres showed that cells in the spheres had typical phenotype of cancer stem cells. There was no sphere formation in a control group with 50 healthy donors.ConclusionsThis study demonstrates that a small fraction of CETCs has proliferative activity. Identifying the CETC subset with cancer stem cell properties may provide more clinically useful prognostic information. Chemotherapy is the most important component in cancer therapy because it frequently reduces the number of tumorspheres.

Highlights

  • Breast cancer is the most common cancer in women worldwide and development of distant metastases is a main reason for cancer mortality

  • cancer stem cells (CSCs) carry typical stem cells properties; they are capable of undergoing extensive proliferation and self-renewal through asymmetric division and differentiation into nonwww.impactjournals.com/oncotarget tumorigenic cancer cells

  • The aim of the present study was to develop a new approach based on functional, pheno-and genotypic features of CSCs for detection and characterization of cells with proliferative activity and cancer stem cell properties among circulating epithelial tumor cells

Read more

Summary

Introduction

Breast cancer is the most common cancer in women worldwide and development of distant metastases is a main reason for cancer mortality. The presence of cancer stem cells (CSCs) in neoplastic tissue has been a long standing hypothesis, and recently, these cells have first been identified in leukemia and subsequently in different solid tumors [8, 9]. CSCs have been identified and isolated from solid tumor tissue or cancer cell lines by different methods such as CSC-specific cell surface marker expression and aldehyde dehydrogenase (ALDH1) activity and their ability to grow as floating spheres (tumorspheres) [12, 13]. A subpopulation of tumor cells with stem-like properties is assumed to be responsible for tumor invasion, metastasis, heterogeneity and therapeutic resistance. This population is termed cancer stem cells (CSCs). We have developed a simple method for identification and characterization of circulating cancer stem cells among circulating epithelial tumor cells (CETCs)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call