Abstract

Participation in running events has increased recently, with a concomitant increase in the rate of running related injuries (RRI). Mechanical overload is thought to be a primary cause of RRI, it is often detected using motion analysis to examine running mechanics during either overground or treadmill running. In treadmill running, no clear consensus for the number of strides required to establish stable kinematic data exists. The aim of this study was to establish the number of strides needed for stable data when analysing gait kinematics in the stance phase of treadmill running. Twenty healthy, masters age group, club runners completed a high intensity interval training run (HIIT) and an energy-expenditure matched medium intensity continuous run (MICR). Thirty consecutive strides at start and end of each run were identified. Sequential averaging was employed to determine the number of strides required to establish a stable value. No significant differences existed in the number of strides required to achieve stable values. Twenty consecutive strides are required to be 95% confident stable values exist for maximum angle, angle at initial foot contact, and range of motion at the ankle, knee, and hip joints variables at the ankle, knee, and hip joints, in all three planes of motion, and spatiotemporal regardless of running speed and time of capture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.