Abstract

Using the composition of some existing smaller graphs to construct some large graphs, the number of spanning trees and the Laplacian eigenvalues of such large graphs are also closely related to those of the corresponding smaller ones. By using tools from linear algebra and matrix theory, we establish closed formulae for the number of spanning trees of the composition of two graphs with one of them being an arbitrary complete 3-partite graph and the other being an arbitrary graph. Our results extend some of the previous work, which depend on the structural parameters such as the number of vertices and eigenvalues of the small graphs only.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.