Abstract

AbstractThere have been numerous results showing that a measurable cardinal κ can carry exactly α normal measures in a model of GCH. where α is a cardinal at most κ++. Starting with just one measurable cardinal, we have [9] (for α = 1), [10] (for α = α++, the maximum possible) and [1] (for α = κ+, after collapsing κ++). In addition, under stronger large cardinal hypotheses, one can handle the remaining cases: [12] (starting with a measurable cardinal of Mitchell order α), [2] (as in [12], but where κ is the least measurable cardinal and α is less than κ, starting with a measurable of high Mitchell order) and [11] (as in [12], but where κ is the least measurable cardinal, starting with an assumption weaker than a measurable cardinal of Mitchell order 2). In this article we treat all cases by a uniform argument, starting with only one measurable cardinal and applying a cofinality-preserving forcing. The proof uses κ-Sacks forcing and the “tuning fork” technique of [8]. In addition, we explore the possibilities for the number of normal measures on a cardinal at which the GCH fails.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.