Abstract
Let Ag be an abelian variety of dimension g and p-rank λ≤1 over an algebraically closed field of characteristic p>0. We compute the number of homomorphisms from π1ét(Ag,a) to GLn(Fq), where q is any power of p. We show that for fixed g, λ, and n, the number of such representations is polynomial in q, and give an explicit formula for this polynomial. We show that the set of such homomorphisms forms a constructible set, and use the geometry of this space to deduce information about the coefficients and degree of the polynomial.In the last section we prove a divisibility theorem about the number of homomorphisms from certain semidirect products of profinite groups into finite groups. As a corollary, we deduce that when λ=0,#Hom(π1ét(Ag,a),GLn(Fq))|GLn(Fq)| is a Laurent polynomial in q.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.