Abstract
BackgroundEvidence on the effect of gut microbiota on the number of metabolic syndrome (MetS) risk factors among children is scarce. We aimed to examine the alterations of gut microbiota with different numbers of MetS risk factors among children.MethodsData were collected from a nested case–control study at the baseline of the Huantai Childhood Cardiovascular Health Cohort Study in Zibo, China. We compared the differences in gut microbiota based on 16S rRNA gene sequencing among 72 children with different numbers of MetS risk factors matched by age and sex (i.e., none, one, and two-or-more MetS risk factors; 24 children for each group).ResultsThe community richness (i.e., the total number of species in the community) and diversity (i.e., the richness and evenness of species in the community) of gut microbiota decreased with an increased number of MetS risk factors in children (P for trend < 0.05). Among genera with a relative abundance greater than 0.01%, the relative abundance of Lachnoclostridium (PFDR = 0.009) increased in the MetS risk groups, whereas Alistipes (PFDR < 0.001) and Lachnospiraceae_NK4A136_group (PFDR = 0.043) decreased in the MetS risk groups compared to the non-risk group. The genus Christensenellaceae_R-7_group excelled at distinguishing one and two-or-more risk groups from the non-risk group (area under the ROC curve [AUC]: 0.84 − 0.92), while the genera Family_XIII_AD3011_group (AUC: 0.73 − 0.91) and Lachnoclostridium (AUC: 0.77 − 0.80) performed moderate abilities in identifying none, one, and two-or-more MetS risk factors in children.ConclusionsBased on the nested case–control study and the 16S rRNA gene sequencing technology, we found that dysbiosis of gut microbiota, particularly for the genera Christensenellaceae_R-7_group, Family_XIII_AD3011_group, and Lachnoclostridium may contribute to the early detection and the accumulation of MetS risk factors in childhood.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.