Abstract

Problems associated with m-ary trees have been studied by computer scientists and combinatorialists. It is well known that a simple generalization of the Catalan numbers counts the number of m-ary trees on n nodes. In this paper we consider τm, n, the number of m-ary search trees on n keys, a quantity that arises in studying the space of m-ary search trees under the uniform probability model. We prove an exact formula for τm, n, both by analytic and by combinatorial means. We use uniform local approximations for sums of i.i.d. random variables to study the asymptotic development of τm, n for fixed m as n→∞.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.