Abstract

A convex polyomino is $k$-$\textit{convex}$ if every pair of its cells can be connected by means of a $\textit{monotone path}$, internal to the polyomino, and having at most $k$ changes of direction. The number $k$-convex polyominoes of given semi-perimeter has been determined only for small values of $k$, precisely $k=1,2$. In this paper we consider the problem of enumerating a subclass of $k$-convex polyominoes, precisely the $k$-$\textit{convex parallelogram polyominoes}$ (briefly, $k$-$\textit{parallelogram polyominoes}$). For each $k \geq 1$, we give a recursive decomposition for the class of $k$-parallelogram polyominoes, and then use it to obtain the generating function of the class, which turns out to be a rational function. We are then able to express such a generating function in terms of the $\textit{Fibonacci polynomials}$. Un polyomino convexe est dit $k$-$\textit{convexe}$ lorsqu’on peut relier tout couple de cellules par un chemin monotone ayant au plus $k$ changements de direction. Le nombre de polyominos $k$-convexes n’est connu que pour les petites valeurs de $k = 1,2$. Dans cet article, nous énumérons la sous-classe des polyominos $k$-convexes qui sont également parallélogramme, que nous appelons $k$-$\textit{parallélogrammes}$. Nous donnons une décomposition récursive de la classe des polyominos $k$-parallélogrammes pour chaque $k$, et en déduisons la fonction génératrice, rationnelle, selon le demi-périmètre. Nous donnons enfin une expression de cette fonction génératrice en termes des $\textit{polynômes de Fibonacci}$.

Highlights

  • In the plane Z × Z a cell is a unit square and a polyomino is a finite connected union of cells having no cut point

  • The class of k-parallelogram polyominoes can be treated in a simpler way than k-convex polyominoes, since we can use the simple fact that a parallelogram polyomino is k-convex if and only if every cell can be reached from the lower leftmost cell by at least one monotone path having at most k-changes of direction

  • We will be able to enumerate k-parallelogram polyominoes according to the semi-perimeter, for all k

Read more

Summary

Introduction

In the plane Z × Z a cell is a unit square and a polyomino is a finite connected union of cells having no cut point. The class of k-parallelogram polyominoes can be treated in a simpler way than k-convex polyominoes, since we can use the simple fact that a parallelogram polyomino is k-convex if and only if every cell can be reached from the lower leftmost cell by at least one monotone path having at most k-changes of direction. Using such a property, we will be able to enumerate k-parallelogram polyominoes according to the semi-perimeter, for all k. This work is a first step towards the enumeration of k-convex polyominoes, since it is possible to apply our decomposition strategy to some larger classes of k-convex polyominoes (such as, for instance, directed k-convex polyominoes)

Classification and decomposition of k-parallelogram polyominoes
Enumeration of k-parallelogram polyominoes
Generating function of k-parallelogram polyominoes
A formula for the number of k-parallelogram polyominoes
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.