Abstract

In this article, we consider the Cauchy problem for systems of nonlinear wave equations, whose nonlinear terms depend mainly on derivatives of the unknown, with small, smooth, and compactly supported initial data. If the nonlinear terms have the critical power, we need some structural conditions to obtain the small data global existence. The null condition is one such condition, but recently some weaker conditions were also found. We discuss the small data global existence and the asymptotic behavior of solutions under these conditions. The corresponding result for nonlinear Schrödinger equations will be also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.