Abstract
Granule-bound starch synthase, also known as the waxy protein catalyses the synthesis of amylose in wheat endosperm starch. In durum wheats, the genes encoding GBSS are present at the two Wx loci on chromosome 7A and 4A (a segment of 7B that has been translocated). Several null Wx-B1 (missing GBSS protein from chromosome 4A) durum lines were produced from crosses with null-4A bread wheats backcrossed to durum wheats. Semolina milled from 4 normal and 7 null-4A durum wheat lines grown over two seasons (1999 and 2000) in South Australia were analysed for amylose content, starch pasting properties as measured by the Rapid Viscoanalyzer (RVA), swelling power and starch damage, protein content and electrophoretic protein analysis. Spaghetti was prepared with a micro-scale extruder and the cooked pasta evaluated for cooking loss, firmness, stickiness and water absorption. The null-4A lines had significantly lower (ca. 5%) amylose content, higher starch peak viscosities and semolina swelling power. The pasta derived from the null-4A lines had lower cooking loss and in 1999 was more adhesive than the non-waxy lines. Cooking loss was correlated with amylose content, peak starch viscosity, swelling power of semolina and cooked pasta adhesiveness. Semolina swelling power was highly correlated with RVA peak viscosity. Waxy durum wheats appear to have an advantage over the normal types in terms of lower cooking loss, widely used as an indicator of pasta cooking quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.