Abstract

SummaryHemodynamic shear stresses cause endothelial cells (ECs) to polarize in the plane of the flow. Paradoxically, under strong shear flows, ECs disassemble their primary cilia, common sensors of shear, and thus must use an alternative mechanism of sensing the strength and direction of flow. In our experiments in microfluidic perfusion chambers, confluent ECs developed planar cell polarity at a rate proportional to the shear stress. The location of Golgi apparatus and microtubule organizing center was biased to the upstream side of the nucleus, i.e. the ECs polarized against the flow. These in vitro results agreed with observations in murine blood vessels, where EC polarization against the flow was stronger in high flow arteries than in veins. Once established, flow-induced polarization persisted over long time intervals without external shear. Transient destabilization of acto-myosin cytoskeleton by inhibition of myosin II or depolymerization of actin promoted polarization of EC against the flow, indicating that an intact acto-myosin cytoskeleton resists flow-induced polarization. These results suggested that polarization was induced by mechanical displacement of EC nuclei downstream under the hydrodynamic drag. This hypothesis was confirmed by the observation that acute application of a large hydrodynamic force to ECs resulted in an immediate downstream displacement of nuclei and was sufficient to induce persistent polarization. Taken together, our data indicate that ECs can sense the direction and strength of blood flow through the hydrodynamic drag applied to their nuclei.

Highlights

  • Most tissues are characterized by coherent cellular polarization: individual cells have opposing sides with distinct properties and the orientations of imaginary axes connecting these sides are highly coordinated (Simons and Mlodzik, 2008)

  • The location of Golgi apparatus and microtubule organizing center was biased to the upstream side of the nucleus, i.e. the endothelial cells (ECs) polarized against the flow

  • Transient destabilization of actomyosin cytoskeleton by inhibition of myosin II or depolymerization of actin promoted polarization of EC against the flow, indicating that an intact acto-myosin cytoskeleton resists flow-induced polarization. These results suggested that polarization was induced by mechanical displacement of EC nuclei downstream under the hydrodynamic drag

Read more

Summary

Introduction

Most tissues are characterized by coherent cellular polarization: individual cells have opposing sides with distinct properties and the orientations of imaginary axes connecting these sides are highly coordinated (Simons and Mlodzik, 2008). This coordination of the polarization axes between cells in the tissue is critical for development and function of organs (Simons and Mlodzik, 2008), and is referred to as planar cell polarity (Sepich et al, 2011).

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call