Abstract

The biosynthesis of yeast 5-aminolevulinate (ALA) synthase, a mitochondrial protein encoded by the nuclear HEM1 gene, has been studied in vitro in a cell-free translation system and in vivo in whole cells. In vitro translation of mRNA hybrid-selected by the cloned HEM1 gene, or of total RNA followed by immunoprecipitation with anti-(ALA synthase) antibody yielded a single polypeptide of higher molecular mass than the purified ALA synthase. This larger form, also seen in pulse-labeled cells, can be post-translationally processed by isolated mitochondria. These results show that the cytoplasmically made ALA synthase is synthesized with a cleavable extension which was estimated to be about 3.5 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The complete nucleotide sequence of the HEM1 gene and its flanking regions was determined. The 5' ends of the HEM1 mRNAs map from -76 to -63 nucleotides upstream of the translation initiation codon. The open reading frame of 1644 base pairs encodes a protein of 548 amino acids with a calculated Mr of 59,275. The predicted amino-terminal sequence of the protein is strongly basic (five basic and no acidic amino acids within the first 35 residues), rich in serine and threonine and must represent the transient presequence that targets this protein to the mitochondria. Comparison of deduced amino acid sequences indicates a clear homology between the mature yeast and chick embryo liver ALA synthases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.