Abstract

The interplay of the nucleon-nucleon interaction and its observables with the “fundamental” symmetries of isospin conservation, parity conservation, time-reversal invariance or CP conservation was realized early on. Many tests of these symmetries through measurements of particular observables of the nucleon-nucleon interaction have been made over a time frame spanning some five decades. It is only in the last decade or so that levels of experimental accuracy have been reached that allow for the deduction of quantitative results of significance. Precision measurements have been made of charge symmetry breaking in n-p elastic scattering (which is the result of isospin non-conservation) and of parity violation in p-p scattering (which is a manifestation of the flavour conserving hadronic weak interaction). Time reversal invariance is much more dificult to study since in this case a null measurement, excluding transmission measurements, does not exist. In the nucleon-antinucleon system the potential exists of studying CP non-conservation in a system other than the kaon system. Unfortunately antiproton beams are at present of insufficient intensity.KeywordsParity ViolationCharge SymmetryAntiproton BeamIsotopic SpinKaon SystemThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.