Abstract
The nucleolar channel system (NCS) is a well-established ultrastructural hallmark of the postovulation endometrium. Its transient presence has been associated with human fertility. Nevertheless, the biogenesis, composition, and function of these intranuclear membrane cisternae are unknown. Membrane systems with a striking ultrastructural resemblance to the NCS, termed R-rings, are induced in nuclei of tissue culture cells by overexpression of the central repeat domain of the nucleolar protein Nopp140. Here we provide a first molecular characterization of the NCS and compare the biogenesis of these two enigmatic organelles. Like the R-rings, the NCS consists of endoplasmic reticulum harboring the marker glucose-6-phosphatase. R-ring formation initiates at the nuclear envelope, apparently by a calcium-mediated Nopp140-membrane interaction, as supported by the calcium-binding ability of Nopp140, the inhibition of R-ring formation by calcium chelators, and the concentration of Nopp140 and complexed calcium in R-rings. Although biogenesis of the NCS may initiate similarly, the reduced presence of complexed calcium and Nopp140 suggests the involvement of additional factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.