Abstract

Succinic acid (SUA) is a common dicarboxylic acid frequently observed in aerosols. Understanding the role of succinic acid in atmospheric new particle formation is essential to study the complicated nucleation mechanism. In this study, high-precision quantum chemical calculations and atmospheric clusters dynamic code (ACDC) simulations are used to investigate the nucleation mechanism of the (SA)x(SUA)y(DMA)z (0 = x, y, z ≤ 3) multicomponent system. The most stable molecular structures show that SUA can form relatively stable clusters with the SA-DMA system by hydrogen bond and proton-transfer interactions. Similar to SA molecules, SUA can provide protons to DMA when excess DMA molecules are available. ACDC simulations indicate that SUA can contribute to the cluster formation, especially at low sulfuric acid concentration and high succinic acid concentration. Moreover, the main cluster flux out of the SUA-containing system is along the non-diagonal (the number of acid molecules is greater than that of base molecules), which is different from the pure SA-DMA system. These clusters are stable enough to be present at a fairly high concentration, and could be a platform for growth into the larger sizes. This organic acid involved cluster formation may explain high nucleation rate at low sulfuric acid concentration and high organic acid concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call