Abstract

ABSTRACTThe nucleation and propagation of misfit dislocations in Ge-Si strained epilayers on (100) Si have been investigated using transmission electron microscopy and X-ray diffraction topography at low lattice parameter mismatch (˜ 0.8%). Misfit dislocations nucleate as half loops which are predominantly unfaulted (> 90%) at the advancing growth interface. Under the driving force of the epilayer strain, unfaulted half loops glide and expand on inclined { 111 }planes toward the heterointerface (i.e. substrate/epilayer interface). These unfaulted half loops consist of a 60°-dislocation segment which lies along < 011> in a plane parallel to the heterointerface (i.e. (100)) and this segment is connected to the growth interface by two screw dislocation segments which both lie on the same inclined {111} glide plane. As 60° dislocations reach the heterointerface on each of the four inclined {111} variants, they form an orthogonal array of misfit dislocations which lie along [011] and [011]. At higher lattice parameter mismatch (˜ 2%), there appear to be some important changes in the dislocation behavior and these changes result in orthogonal arrays of heterointerface dislocations which are predominantly edge type (i.e. 90°dislocations).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.