Abstract

The water molecule occurs in two nuclear-spin isomers that differ by the value of the total nuclear spin of the hydrogen atoms, i.e., I = 0 for para-H2O and I = 1 for ortho-H2O. Spectroscopic transitions between rovibrational states of ortho and para water are extremely weak due to the tiny hyperfine nuclear-spin-rotation interaction of only ∼30 kHz and, so far, have not been observed. We report the first comprehensive theoretical investigation of the hyperfine effects and ortho-para transitions in H2 16O due to nuclear-spin-rotation and spin-spin interactions. We also present the details of our newly developed general variational approach to the simulation of hyperfine effects in polyatomic molecules. Our results for water suggest that the strongest ortho-para transitions with room-temperature intensities on the order of 10-31 cm/molecule are about an order of magnitude larger than previously predicted values and should be detectable in the mid-infrared ν2 and near-infrared 2ν1 + ν2 and ν1 + ν2 + ν3 bands by current spectroscopy experiments.

Full Text

Published Version
Open DOI Link

Get access to 250M+ research papers

Discover from 40M+ Open access, 3M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call