Abstract
The nuclear lamina is an important structural determinant for the nuclear envelope as a whole, attaching chromatin domains to the nuclear periphery and localizing some nuclear envelope proteins. The major components of the lamina are the A-type and B-type lamins, which are members of the intermediate filament protein family. Whereas the expression of A-type lamins is developmentally regulated, B-type lamins, as a class, are found in all cells. The association of B-type lamins with many aspects of nuclear function has led to the view that these are essential proteins, and there is growing evidence suggesting that they regulate cellular senescence. However, B-type lamins are dispensable in certain cell types in vivo, and neither A-type nor B-type lamins may be required in early embryos or embryonic stem cells. The picture that is beginning to emerge is of a complex network of interactions at the nuclear periphery that may be defined by cell- and tissue-specific functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.