Abstract

Neutron stars are valuable laboratories for the study of dense matter. Recent observations have uncovered both massive and low-mass neutron stars and have also set constraints on neutron star radii. The largest mass measurements are powerfully influencing the high-density equation of state because of the existence of the neutron star maximum mass. The smallest mass measurements, and the distributions of masses, have implications for the progenitors and formation mechanisms of neutron stars. The ensemble of mass and radius observations can realistically restrict the properties of dense matter and, in particular, the behavior of the nuclear symmetry energy near the nuclear saturation density. Simultaneously, various nuclear experiments are progressively restricting the ranges of parameters describing the symmetry properties of the nuclear equation of state. In addition, new theoretical studies of pure neutron matter are providing insights. These observational, experimental, and theoretical constraints of dense matter, when combined, are now revealing a remarkable convergence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.