Abstract

Author SummaryCancers often develop as a consequence of deregulated expression of key factors that operate during normal development. T-cell factor 1 (Tcf1) has an established role in the nuclear response to Wnt signaling during normal T-cell development in the thymus. Here we show in mice that the absence of Tcf1 can trigger tumorigenesis. As expected from previous work, lack of Tcf1 results in a small thymus with several partial blocks in T-cell development in the thymus. Surprisingly, we observe that a large proportion of Tcf1−/− mice spontaneously develop thymic lymphomas. Thorough investigation of these thymic-derived tumors revealed that the mechanism underlying these lymphomas is, paradoxically, increased levels of Wnt-signaling. We propose that Wnt-signaling in these tumors is mediated by up-regulated expression of the Tcf1-homologue, Lef1, and specifically its long isoform. Furthermore, we have evidence to propose that in a normal thymus, short isoforms of Tcf1 that cannot respond to Wnt signals act as repressors of Lef1-mediated Wnt-signaling. Thus, we propose that Tcf1 has a dual function developing T cells in mice: it functions as a T-cell–specific tumor suppressor gene in addition to its established role as a transcriptional activator of Wnt-induced proliferation. Whether loss of function of Tcf-1 as a tumor suppressor gene actually occurs in human T-cell lymphoblastic leukemias is currently under investigation.

Highlights

  • Cancers often develop as consequence of deregulated expression of key factors that operate during normal development

  • T-cell factor 1 (Tcf1) has an established role in the nuclear response to Wnt signaling during normal Tcell development in the thymus

  • We propose that Wnt-signaling in these tumors is mediated by up-regulated expression of the Tcf1homologue, Lef1, and its long isoform

Read more

Summary

Introduction

Cancers often develop as consequence of deregulated expression of key factors that operate during normal development. Deregulation of the Wnt signaling pathway has been implicated in many types of malignancies, especially in solid tumors (reviewed in [1,2,3]). Mutations in different components of the Wnt pathway are found to contribute to carcinogenesis [3]. Wnt proteins function as proliferation-inducing growth factors and may affect cell-fate decisions [4,5,6]. B-catenin is translocated to the nucleus, where it forms an active transcription complex with the nuclear proteins downstream of the Wnt pathway: TCF1 (T-cell factor 1, the product of the Tcf gene, referred to as Tcf throughout this article), LEF1

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call