Abstract

Activity of the NtrYX two-component system has been associated with important processes in diverse bacteria, ranging from symbiosis to nitrogen and energy metabolism. In the facultative alphaproteobacterium Rhodobacter sphaeroides, loss of the two-component system NtrYX results in increased lipid production and sensitivity to some known cell envelope-active compounds. In this study, we show that NtrYX directly controls multiple properties of the cell envelope. We find that the response regulator NtrX binds upstream of cell envelope genes, including those involved in peptidoglycan biosynthesis and modification and in cell division. We show that loss of NtrYX impacts the cellular levels of peptidoglycan precursors and lipopolysaccharide and alters cell envelope structure, increasing cell length and the thickness of the periplasm. Cell envelope function is also disrupted in the absence of NtrYX, resulting in increased outer membrane permeability. Based on the properties of R. sphaeroides cells lacking NtrYX and the target genes under direct control of this two-component system, we propose that NtrYX plays a previously undescribed, and potentially conserved, role in the assembly, structure, and function of the cell envelope in a variety of bacteria.IMPORTANCE The bacterial cell envelope provides many important functions. It protects cells from harsh environments, serves as a selective permeability barrier, houses bioenergetic functions, defines sensitivity to antibacterial agents, and plays a crucial role in biofilm formation, symbiosis, and virulence. Despite the important roles of this cellular compartment, we lack a detailed understanding of the biosynthesis and remodeling of the cell envelope. Here, we report that the R. sphaeroides two-component signaling system NtrYX is a previously undescribed regulator of cell envelope processes, providing evidence that it is directly involved in controlling transcription of genes involved in cell envelope assembly, structure, and function in this and possibly other bacteria. Thus, our data report on a newly discovered process used by bacteria to assemble and remodel the cell envelope.

Highlights

  • Activity of the NtrYX two-component system has been associated with important processes in diverse bacteria, ranging from symbiosis to nitrogen and energy metabolism

  • We found 81 total genes with at least a twofold increase in transcript abundance in ΔntrYX cells compared to the parent and 70 total genes with at least a twofold decrease in ΔntrYX cells compared to the parent (FDR Յ 0.05) (Fig. 1A; see Data Set S1 in the supplemental material)

  • We found significant changes in transcript abundance for genes encoding steps in the synthesis of LPS components O antigen and lipid A, including a large increase in mRNA derived from envA/lpxC, encoding the first committed step in lipid A biosynthesis, in the ΔntrYX strain compared to the parent strain (Fig. 1B and C)

Read more

Summary

Introduction

Activity of the NtrYX two-component system has been associated with important processes in diverse bacteria, ranging from symbiosis to nitrogen and energy metabolism. Based on the properties of R. sphaeroides cells lacking NtrYX and the target genes under direct control of this two-component system, we propose that NtrYX plays a previously undescribed, and potentially conserved, role in the assembly, structure, and function of the cell envelope in a variety of bacteria. IMPORTANCE The bacterial cell envelope provides many important functions It protects cells from harsh environments, serves as a selective permeability barrier, houses bioenergetic functions, defines sensitivity to antibacterial agents, and plays a crucial role in biofilm formation, symbiosis, and virulence. We report that the R. sphaeroides two-component signaling system NtrYX is a previously undescribed regulator of cell envelope processes, providing evidence that it is directly involved in controlling transcription of genes involved in cell envelope assembly, structure, and function in this and possibly other bacteria. There are many examples of TCSs that regulate cell envelope functions in response to a variety of signals (e.g., WalRK, MtrAB) [5]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call