Abstract
In this paper, we propose a new approach to the theory of finite multichain Markov decision processes (MDPs) with different performance optimization criteria. We first propose the concept of nth-order bias; then, using the average reward and bias difference formulas derived in this paper, we develop an optimization theory for finite MDPs that covers a complete spectrum from average optimality, bias optimality, to all high-order bias optimality, in a unified way. The approach is simple, direct, natural, and intuitive; it depends neither on Laurent series expansion nor on discounted MDPs. We also propose one-phase policy iteration algorithms for bias and high-order bias optimal policies, which are more efficient than the two-phase algorithms in the literature. Furthermore, we derive high-order bias optimality equations. This research is a part of our effort in developing sensitivity-based learning and optimization theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.