Abstract

Apoptosis is essential in embryonic development, clonal selection of cells of the immune system and in the prevention of cancer. Apoptotic cells display characteristic changes in morphology that precede the eventual fragmentation of nuclear DNA resulting in cell death. Current evidence implicates DNase I as responsible for hydrolysis of DNA during apoptosis. In vivo, it is likely that cytoplasmic actin binds and inhibits the enzymatic activity and nuclear translocation of DNase I and that disruption of the actin-DNase I complex results in activation of DNase I. In this report we demonstrate that the N-terminal fragment of gelsolin (N-gelsolin) disrupts the actin-DNase I interaction. This provides a molecular mechanism for the role of the N-gelsolin in regulating DNase I activity. We also show that cofilin stabilises the actin-DNase I complex by forming a ternary complex that prevents N-gelsolin from releasing DNase I from actin. We suggest that both cofilin and gelsolin are essential in modulating the release of DNase I from actin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call