Abstract

The effects of microglia-conditioned medium (MCM) on the inducible Nrf2 system in astrocyte-rich cultures were investigated by determination of glutathione (GSH) levels, γglutamylcysteine ligase (γGCL) activity, the protein levels of Nrf2, Keap1, the modulatory subunit of γGCL (γGCL-M) and activated MAP kinases (ERK1/2, JNK and p38). Microglia were either cultured for 24 h in serum-free culture medium to achieve microglia-conditioned medium from non-activated cells (MCM(0) ), used as control condition, or activated with different concentrations (0.1-1,000 ng mL(-1) ) of lipopolysaccharide (LPS) to produce MCM(0.1-1,000) . Acute exposure (24 h) to MCM(100) increased GSH, γGCL activity, the protein levels of γGCL-M, Nrf2, and activated JNK and ERK1/2 in astrocyte-rich cultures. In contrast, treatment with MCM(10) for 24 h decreased components of the Nrf2 system in parallel with activation of p38 MAPK. Stimulation of the Nrf2 system by tBHQ was partly intact after 24 h but blocked after 72 h treatment with MCM(10) and MCM(100) . This down-regulation after 72 h correlated with activation of p38 MAPK and lack of ERK1/2 and JNK activation. The negative effects were partly reversed by an inhibitor of p38 which restored tBHQ mediated protection against oxidative stress. In conclusion, the study showed a negative effect of MCM(10) on the inducible anti-oxidant defense in astrocyte-rich cultures at both 24 and 72 h that correlated with activation of p38 and was partly reversed by a p38 inhibitor. A transient protective effect of MCM(100) on astrocyte-rich cultures against H(2)O(2) toxicity was observed at 24 h which coincided with activation of JNK and ERK1/2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call