Abstract

BackgroundNrf1 (nuclear factor-erythroid 2 p45 subunit-related factor 1) is a transcription factor mediating cellular responses to xenobiotic and pro-oxidant stress. Nrf1 regulates the transcription of many stress-related genes through the electrophile response elements (EpREs) located in their promoter regions. Despite its potential importance in human health, the mechanisms controlling Nrf1 have not been addressed fully.Principal FindingsWe found that proteasomal inhibitors MG-132 and clasto-lactacystin-β-lactone stabilized the protein expression of full-length Nrf1 in both COS7 and WFF2002 cells. Concomitantly, proteasomal inhibition decreased the expression of a smaller, N-terminal Nrf1 fragment, with an approximate molecular weight of 23 kDa. The EpRE-luciferase reporter assays revealed that proteasomal inhibition markedly inhibited the Nrf1 transactivational activity. These results support earlier hypotheses that the 26 S proteasome processes Nrf1 into its active form by removing its inhibitory N-terminal domain anchoring Nrf1 to the endoplasmic reticulum. Immunoprecipitation demonstrated that Nrf1 is ubiquitinated and that proteasomal inhibition increased the degree of Nrf1 ubiquitination. Furthermore, Nrf1 protein had a half-life of approximately 5 hours in COS7 cells. In contrast, hypoxia (1% O2) significantly increased the luciferase reporter activity of exogenous Nrf1 protein, while decreasing the protein expression of p65, a shorter form of Nrf1, known to act as a repressor of EpRE-controlled gene expression. Finally, the protein phosphatase inhibitor okadaic acid activated Nrf1 reporter activity, while the latter was repressed by the PKC inhibitor staurosporine.ConclusionsCollectively, our data suggests that Nrf1 is controlled by several post-translational mechanisms, including ubiquitination, proteolytic processing and proteasomal-mediated degradation as well as by its phosphorylation status.

Highlights

  • Nrf1 belongs to the cap-n-collar (CNC) subfamily of basic leucine zipper transcriptional factors including Nrf1, Nrf2, Nrf3, p45NFE2 (p45NFE2, nuclear factor-erythroid 2 p45 subunit), Bach1 (BTB (Broad-complex, Tramtrack, and Bric-a-brac) and CNC homology 1, basic leucine zipper transcription factor) and Bach2

  • Collectively, our data suggests that Nrf1 is controlled by several post-translational mechanisms, including ubiquitination, proteolytic processing and proteasomal-mediated degradation as well as by its phosphorylation status

  • The sequence required for DNA-binding of CNC-basic leucine zipper (bZIP) factors is known as the electrophile response element (EpRE; referred to as the antioxidant response element (ARE)) with a consensus sequence of 59-TGAnnnnGC-39 [2]

Read more

Summary

Introduction

Nrf (nuclear factor-erythroid 2 p45 subunit-related factor 1) belongs to the cap-n-collar (CNC) subfamily of basic leucine zipper (bZIP) transcriptional factors including Nrf, Nrf, Nrf, p45NFE2 (p45NFE2, nuclear factor-erythroid 2 p45 subunit), Bach (BTB (Broad-complex, Tramtrack, and Bric-a-brac) and CNC (cap’n’collar) homology 1, basic leucine zipper transcription factor) and Bach. Nrf (nuclear factor-erythroid 2 p45 subunit-related factor 1) belongs to the cap-n-collar (CNC) subfamily of basic leucine zipper (bZIP) transcriptional factors including Nrf, Nrf, Nrf, p45NFE2 (p45NFE2, nuclear factor-erythroid 2 p45 subunit), Bach (BTB (Broad-complex, Tramtrack, and Bric-a-brac) and CNC (cap’n’collar) homology 1, basic leucine zipper transcription factor) and Bach2 These factors must bind to small Maf or c-Jun proteins prior to DNA binding [1]. Nrf regulates the transcription of many stress-related genes through the electrophile response elements (EpREs) located in their promoter regions. Despite its potential importance in human health, the mechanisms controlling Nrf have not been addressed fully

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.