Abstract

This paper presents the oxides of nitrogen (NOx) and nitrous oxide (N2O) emission characteristics of a Cooperative Fuel Research (CFR) engine modified to operate in homogeneous charge compression ignition (HCCI) combustion mode. N-heptane was used as the fuel in this research. Several parameters were varied, including intake air temperature and pressure, air/fuel ratio (AFR), compression ratio (CR), and exhaust gas recirculation (EGR) rate, to alter the HCCI combustion phasing from an overly advanced condition where knocking occurred to an overly retarded condition where incomplete combustion occurred with excessive emissions of unburned hydrocarbons (UHC) and carbon monoxide (CO). NOx emissions below 5 ppm were obtained over a fairly wide range of operating conditions, except when knocking or incomplete combustion occurred. The NOx emissions were relatively constant when the combustion phasing was within the acceptable range. NOx emissions increased substantially when the HCCI combustion phasing was retarded beyond the optimal phasing even though lower combustion temperatures were expected. The increased N2O and UHC emissions observed with retarded combustion phasing may contribute to this unexpected increase in NOx emissions. N2O emissions were generally less than 0.5 ppm; however, they increased substantially with excessively retarded and incomplete combustion. The highest measured N2O emissions were 1.7 ppm, which occurred when the combustion efficiency was approximately 70%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.