Abstract

The no-wait job shop problem (NWJS-R) considered here is a version of the job shop scheduling problem where, for any two operations of a job, a fixed time lag between their starting times is prescribed. Also, sequence-dependent set-up times between consecutive operations on a machine can be present. The problem consists in finding a schedule that minimizes a general regular objective function. We study the so-called optimal job insertion problem in the NWJS-R and prove that this problem is solvable in polynomial time by a very efficient algorithm, generalizing a result we obtained in the case of a makespan objective. We then propose a large neighborhood local search method for the NWJS-R based on the optimal job insertion algorithm and present extensive numerical results that compare favorably with current benchmarks when available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.