Abstract

Near the suction/injection area, a scientific definition for laminar boundary layer flow and heat transfer of an incompressible viscous flow over a stretching cylinder is given. In the study, differential equations with partial derivatives are converted into dimensionless coupled equations using numerical and analytical methods of Akbari- Ganji and Finite Elements Methods. The goal of this first stage of research and research on this topic is to use simplified forms to simplify equations using derivatives of simplified forms; the analysis of the displacement of the heat flux and the velocity gradient will be done using the changes of the Prandtl number. Based on the results obtained on this issue, it is found that the suction process increments surface firmness and quality, whereas the injection decreases surface skin friction. Also, at the points where the water and oil are attached to the surface of the cylinder, the heat has reached its maximum value, and as the distance increases along the Y axis, the temperature decreases. The highest temperature gradient is observed for water fluid. This shows that the use of water fluid around the cylinder accelerates the process of heat transfer from the surface to the outside of the boundary layer. One of the differences between the use of oil and water fluid around the cylinder according to the 2D contours is the difference in the temperature gradient of the two fluids. So that the highest temperature gradient is observed for water fluid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.