Abstract

A dynamic mathematical model for coupling the refrigeration system and PCMs has been developed in this paper. Overall the model consists of the following basic components: a compressor, a condenser, an expansion valve, an evaporator cooler and a PCM heat exchanger. The model developed here, is based on a lumped-parameter method. The condenser and evaporator were treated as storage tanks at different states, which have a superheat region, a two-phase region and a sub-cooled region. In the single-phase region the parameters are considered homogeneous whereas in the two-phase region, the intensive properties are considered as in thermal equilibrium. The compressor model is considered as an adiabatic process; an isentropic efficiency is employed in this process. The expansion process in the thermostatic expansion valve is considered as an isenthalpic process. The PCM is treated as a one-dimensional heat transfer model. The mathematical simulation in this study predicts the refrigerant states and dynamic coefficient of performance in the system with respect to time. The dynamic validation shows good agreement with the test result.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call