Abstract

This study demonstrates that endopin 2 is a unique secretory vesicle serpin that displays cross-class inhibition of cysteine and serine proteases, indicated by effective inhibition of papain and elastase, respectively. Homology of the reactive site loop (RSL) domain of endopin 2, notably at P1-P1' residues, with other serpins that inhibit cysteine and serine proteases predicted that endopin 2 may inhibit similar proteases. Recombinant N-His-tagged endopin 2 inhibited papain and elastase with second-order rate constants (k(ass)) of 1.4 x 10(6) and 1.7 x 10(5) M(-1) s(-1), respectively. Endopin 2 formed SDS-stable complexes with papain and elastase, a characteristic property of serpins. Interactions of the RSL domain of endopin 2 with papain and elastase were indicated by cleavage of endopin 2 near the predicted P1-P1' residues by these proteases. Endopin 2 did not inhibit the cysteine protease cathepsin B, or the serine proteases chymotrypsin, trypsin, plasmin, and furin. Endopin 2 in neuroendocrine chromaffin cells was colocalized with the secretory vesicle component (Met)enkephalin by confocal immunonfluorescence microscopy, and was present in isolated secretory vesicles (chromaffin granules) from chromaffin cells as a glycoprotein of 72-73 kDa. Moreover, regulated secretion of endopin 2 from chromaffin cells was induced by nicotine and KCl depolarization. Overall, these results demonstrate that the serpin endopin 2 possesses dual specificity for inhibiting both papain-like cysteine and elastase-like serine proteases. These findings demonstrate that endopin 2 inhibitory functions may occur in the regulated secretory pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.