Abstract

BackgroundMembers of the Kinesin-3 family of kinesin-like proteins mediate transport of axonal vesicles (KIF1A, KIF1Bβ), distribution of mitochondria (KIF1Bα) and anterograde Golgi to ER vesicle transport (KIF1C). Until now, little is known about the regulation of kinesin-like proteins. Several proteins interact with members of this protein family. Here we report on a novel, KIF1 binding protein (KBP) that was identified in yeast two-hybrid screens.ResultsKBP was identified by using the yeast-two-hybrid system with an amino-terminal fragment of KIF1C as a bait that is strongly homologous to KIF1B. Here we investigated the interaction of KBP and KIF1B. The full length proteins coimmunoprecipitated after overexpression and in untransfected 293 cells. Immunofluorescence experiments revealed that KBP was mainly localized to mitochondria, as has been described for KIF1Bα. Overexpression of a deletion mutant or reduction of the KBP protein level using an anti-sense construct led to an aggregation of mitochondria. Such an effect is probably due to the lower activity of KIF1Bα in the absence of KBP, as was revealed in motility assays.ConclusionKBP is a new binding partner for KIF1Bα that is a regulator of its transport function and thus represents a new type of kinesin interacting protein.

Highlights

  • Members of the Kinesin-3 family of kinesin-like proteins mediate transport of axonal vesicles (KIF1A, KIF1Bβ), distribution of mitochondria (KIF1Bα) and anterograde Golgi to ER vesicle transport (KIF1C)

  • Identification and cloning of KIF1 binding protein (KBP) We have previously identified two proteins that bind to KIF1C, PTPD1 and members of the 14-3-3 protein family [8,19]

  • A high amino acid sequence homology of 90% between KIF1C and KIF1Bα in this region supports the conclusion that KBP can bind to both proteins, and a manuscript describing the role of KBP for KIF1C is in preparation

Read more

Summary

Introduction

Members of the Kinesin-3 family of kinesin-like proteins mediate transport of axonal vesicles (KIF1A, KIF1Bβ), distribution of mitochondria (KIF1Bα) and anterograde Golgi to ER vesicle transport (KIF1C). Actin filaments are used by the myosin family of proteins, while transport along microtubules (MT) is mediated by either kinesin-like proteins (KLPs) or dyneins. The functional difference between these two kinds of molecular motors lies in the polarity of movement. Dyneins transport their cargoes toward the minus end of MT, while most KLPs transport cargo towards the minus and plus end of MT, depending on the position of the motor domain at the amino- or carboxyl-terminus of the protein (for reviews see [1,2]). The common feature of all KLPs is a high degree of homology in their motor domain, a 340 amino acids region that contains MT- and ATP-binding sites and classifies them into one of 14 families of the kinesin superfamily [3]. Human and mouse genomes encode 45 KLPs [4] whose functions classically (page number not for citation purposes)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.