Abstract

BackgroundLong noncoding RNAs (lncRNAs) have been shown to participate in multiple biological processes and confer drug resistance. However, it remains unclear whether lncRNAs are involved in conferring cetuximab resistance in colorectal cancer (CRC) cells.MethodsCell Counting Kit-8 (CCK-8) assays were performed to assess the sensitivity of CRC cell lines to cetuximab treatment. We incubated Caco-2 cells, which are partially responsive to cetuximab, with increasing concentrations of cetuximab for approximately 6 months to generate Caco-2 cetuximab-resistant (Caco-2 CR) cells. Microarray analysis comparing Caco-2 CR with Caco-2 cells was used to identify lncRNAs that were potentially related to cetuximab resistance. Caco-2 cells were stably transduced with cetuximab resistance-associated RNA transcript 16 (CRART16) or an empty vector using lentiviral infection; the cells were designated Caco-2-CRART16 and Caco-2-NC, respectively, and were analyzed with RNA sequencing (RNA-seq). Quantitative real-time PCR (qRT-PCR) was performed to investigate RNA expression. Flow cytometry and TUNEL assays were used to assess apoptosis levels induced by cetuximab. The cell cycle, stemness biomarkers and membrane proteins of CRC cells were assessed via flow cytometry. RNA fluorescence in situ hybridization (FISH) was used to examine CRART16 localization and expression. Bioinformatics analysis was performed to predict the potential mechanism of CRART16, which was further validated by a dual-luciferase reporter assay. Differences in measurement data were compared using Student’s t test, one-way ANOVA followed by Dunnett’s test and two-way ANOVA.ResultsThe novel lncRNA CRART16 was upregulated in Caco-2 CR cells. CRART16 overexpression reversed the effects of cetuximab on cell viability and reduced cetuximab-induced apoptosis. Meanwhile, CRART16 overexpression led to increases in the proportion of CD44+/CD133+ cells. In addition, CRART16 acts as a competing endogenous RNA (ceRNA) for miR-371a-5p to regulate V-Erb-B2 Erythroblastic Leukemia Viral Oncogene Homolog 3 (ERBB3) expression. MiR-371a-5p mimics counteracted the cetuximab resistance induced by CRART16 overexpression. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that after CRART16 was overexpressed, the resulting differentially expressed mRNAs were mainly enriched in the MAPK signaling pathway.ConclusionsCRART16 overexpression may contribute to cetuximab resistance through the miR-371a-5p/ERBB3/MAPK pathway. Additionally, CRART16 contributes to the acquisition of stemness properties.

Highlights

  • Long noncoding RNAs have been shown to participate in multiple biological processes and confer drug resistance

  • cetuximab resistance-associated RNA transcript 16 (CRART16) overexpression may contribute to cetuximab resistance through the miR-371a-5p/ERBB3/ MAPK pathway

  • Establishment of cetuximab‐resistant Caco‐2 cells We examined the sensitivity of a panel of colorectal cancer (CRC) cell lines to cetuximab treatment by incubating the cells with various concentrations of cetuximab for 48 h, and CCK8 assays were performed

Read more

Summary

Introduction

Long noncoding RNAs (lncRNAs) have been shown to participate in multiple biological processes and confer drug resistance. It remains unclear whether lncRNAs are involved in conferring cetuximab resistance in colorectal cancer (CRC) cells. In the past two decades, with the use of chemotherapeutic drugs and the development of treatments, the overall survival (OS) of metastatic colorectal cancer (mCRC) patients has been prolonged to approximately 2 years [2]. The application of targeted agents, such as cetuximab and bevacizumab, further improved the OS of mCRC patients to approximately 30 months [3, 4]. Attention has been given to the mechanism underlying the development of acquired resistance to cetuximab, and it remains a promising approach for seeking novel therapeutic targets for late-stage CRC

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call