Abstract

BackgroundEpigenetic modifications play a critical role in the regulation of all DNA-based processes, such as transcription, repair, and replication. Inappropriate histone modifications can result in dysregulation of cell growth, leading to neoplastic transformation and cell death. Renal tumors have been shown to have a higher global methylation percentage and reduced histone acetylation. Preclinical models have revealed that histone gene modifiers and epigenetic alterations play important roles in renal cell carcinoma (RCC) tumorigenesis. Recently, a novel HDAC inhibitor, N-hydroxy-7-(2-naphthylthio) heptanomide (HNHA), has been introduced as an example of a new class of anti-cancer agents. The anti-cancer activity of HNHA and the underlying mechanisms of action remain to be clarified.MethodsThe MTS assay using a panel of RCC cells was used to evaluate the anti-proliferative effects of HNHA. The established HDAC inhibitors, SAHA and TSA, were used for comparison. Western blotting analysis was performed to investigate the acetylation of histone H3 and the expression of apoptotic markers in vitro and in vivo. Subcellular fractionation was performed to evaluate expression of Bax and cytochrome c in the cytosol and mitochondria, and also translocation of cytochrome c from the cytoplasm to the nucleus. A confocal microscopic evaluation was performed to confirm inhibition of cell proliferation, induction of apoptosis, and the nuclear translocation of cytochrome c in RCC cells.ResultsIn this study, we investigated the apoptosis-inducing activity of HNHA in cultured kidney cancer cells. Apoptosis in the HNHA-treated group was induced significantly, with marked caspase activation and Bcl-2 suppression in RCC cells in vitro and in vivo. HNHA treatment caused cytochrome c release from mitochondria, which was mediated by increased Bax expression and caspase activation. HNHA also induced nuclear translocation of cytochrome c, suggesting that HNHA can induce caspase-independent nuclear apoptosis in RCC cells. An in vivo study showed that HNHA had greater anti-tumor and pro-apoptotic effects on RCC xenografts than the established HDAC inhibitors.ConclusionsHNHA has more potent anti-tumor activity than established HDAC inhibitors. Its activities are mediated by caspase-dependent and cytochrome-c-mediated apoptosis in RCC cells. These results suggest that HNHA may offer a new therapeutic approach to RCC.

Highlights

  • Epigenetic modifications play a critical role in the regulation of all DNA-based processes, such as transcription, repair, and replication

  • hydroxy-7-(2-naphthylthio) heptanomide (HNHA) induced histone H3 acetylation in renal cell carcinoma (RCC) cells To investigate the effects of HNHA on histone acetylation in RCC cells, we exposed Caki-1 and A-498 cells to HNHA at various doses and evaluated histone H3 acetylation by Western blotting

  • We assessed the effects of HNHA on the acetylation of non-histone proteins using α-tubulin; αtubulin acetylation was increased by HNHA in a dose-dependent manner (Figure 1A)

Read more

Summary

Introduction

Epigenetic modifications play a critical role in the regulation of all DNA-based processes, such as transcription, repair, and replication. Inappropriate histone modifications can result in dysregulation of cell growth, leading to neoplastic transformation and cell death. Preclinical models have revealed that histone gene modifiers and epigenetic alterations play important roles in renal cell carcinoma (RCC) tumorigenesis. Epigenetic modifications, defined as heritable changes in gene expression that are not due to any alteration in the DNA sequence, play a key role in the regulation of all DNA-based processes, such as transcription, repair, and replication [2]. Because histone modifications are proposed to affect chromosome function, inappropriate histone modifications would be expected to result in dysregulation of cell growth, leading to neoplastic transformation or cell death [3,4,5,6]. The histone-modifying enzymes, histone acetyltransferases—which include histone deacetylases (HDACs) and histone methyltransferases (HMTs)—regulate these modification processes

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.